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Abstract

We propose a framework for combining portfolio rules while mitigating the im-

pact of estimation error. Our main goal is to integrate heterogeneous rules that pre-

viously proposed combination methods cannot accommodate, enabling researchers

and investors to leverage established and ongoing advances in portfolio choice. The

proposed framework relies on the (pseudo) out-of-sample returns of the considered

rules, thus avoiding estimation of the PRs’ return moments. The optimal combina-

tion is determined by an ensemble approach that maximizes the utility generated

jointly by the candidate rules while allowing for learning about the PRs’ relative

performance. Based on out-of-sample evaluations of over forty years, we document

substantial utility gains for our approach compared to both individual rules and

previously proposed combination strategies.
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1 Introduction

Over time, many ingenious portfolio rules (PRs) have been devised, both theory based

and data driven. For a cross-section of risky assets, vastly different techniques have

been proposed, in large part aiming to correct the empirical shortcomings of the seminal

Markowitz (1952) mean-variance (MV) framework originating from estimation uncer-

tainty: these contributions include sophisticated shrinkage approaches (see, e.g., Barroso

and Saxena 2022), strategies that exploit economic restrictions implied by asset pric-

ing models (see, e.g., MacKinlay and Pástor 2000), volatility timing strategies (see, e.g.,

Kirby and Ostdiek 2012), parametric portfolio policies (see, e.g., Brandt et al. 2009;

DeMiguel et al. 2020) and approaches that exploit asset characteristics using machine

learning techniques (see, e.g., Freyberger et al. 2020; Gu et al. 2020; Cong et al. 2022).

In addition, DeMiguel et al. (2009) and Duchin and Levy (2009) show that the naïve

1/N rule, which avoids estimation error by ignoring sample information, outperforms

many optimization-based rules in demanding out-of-sample (OOS) settings. Similarly,

many portfolio rules have been put forward for optimal market timing, i.e., the allocation

between an aggregate equity portfolio and a risk-free asset. While some of these rules

use macroeconomic data and financial ratios (see, e.g., Rapach et al. 2010; Ferreira and

Santa-Clara 2011; Dangl and Halling 2012; Johannes et al. 2014), others rely on forward-

looking information from option prices (see, e.g., Pyun 2019), or exploit long-short return

anomalies in the cross-section of stocks by using machine learning methods and shrinkage

techniques (Dong et al., 2022).

Each of the above mentioned PRs (and any other PR) is defined by the information set

it uses and by how it maps information into asset weights for a given investment universe.

Different PRs have different virtues as well as limitations, and merging heterogeneous

PRs is economically and statistically motivated. Economically, combinations of PRs

might diversify across their idiosyncratic risks, chief among them estimation risk, akin
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to the diversification across assets for investors with a concave utility function. Further,

as different PRs use different information sets and/or different methods for processing

information into portfolio weights, combinations of PRs might capture complementary

aspects of the return generating process, which is particularly important in light of the

notoriously low signal-to-noise ratio of asset returns. Statistically, PRs can be seen as

estimators. In different contexts, combinations of estimators have been shown to be

theoretically appealing and to perform well in empirical applications. Overall, there are

valid reasons for combining PRs rather than relying on one particular PR and dismissing

all alternatives from the outset.

The extant literature has, indeed, developed several combination approaches aimed

to control estimation error and, consequently, improve OOS performance. However, ex-

isting approaches are applicable to a rather specific and limited set of PRs, typically

within the MV or global minimum variance (GMV) frameworks, with the addition of

the 1/N rule (see, e.g., Kan and Zhou 2007; Tu and Zhou 2011; Lassance et al. 2022;

Kan et al. 2022). Moreover, in order to determine the optimal combination, they usually

rely on specific distributional assumptions with respect to the generating process of asset

returns. Consequently, existing combination strategies provide a rather narrow set of

tools for diversifying estimation error and, hence, for improving asset allocation perfor-

mance. To the best of our knowledge, there is no utility-based optimization framework

for combining an arbitrary number of PRs that rely on heterogeneous information sets

and/or vastly different methods for mapping information into asset weights while, at the

same time, circumventing estimation of the PRs’ return moments.1 For instance, for a

cross-section of assets there is currently no utility maximization framework for combin-

ing a shrinkage-based approach such as, e.g., the method of Barroso and Saxena (2022)

1In our proposed approach, we treat as given the mapping between information signals and asset
weights that each candidate PR implies. As detailed below in Section 3.1, it is straightforward to back
out the asset weights implied by combining the PRs.
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with, say, a volatility timing strategy and with rules based on cross-sectional charac-

teristics. Similarly, it is not obvious how to combine market timing rules that rely on

point forecasts for the equity premium with rules based on density forecasts and/or with

others that exploit cross-sectional characteristics. Further, existing combination methods

can be seen as candidate PRs themselves and, hence, combined with other PRs. Exist-

ing approaches cannot entertain such additional layer. Finally, there is no optimization

framework for adapting the combination to changing market environments, as particular

(combinations of) PRs may outperform at certain points in time, while others may shine

at other points in time. All in all, the extant literature does not allow to fully exploit the

relative strengths of the many solutions previously proposed to portfolio choice problems.

Our study intends to fill these gaps. In particular, our main goal is to provide an

overarching optimization framework for integrating heterogeneous PRs that alternative

combination methods are unable to accommodate. For developing our framework, miti-

gating estimation error has been an important concern.2 Our framework can be seen as

an outer layer, in which candidate PRs, irrespective of their design, can be combined.

As such, our framework enables researchers and investors to comprehensively leverage

existing and ongoing scientific progress in asset allocation.

The investor in our framework is endowed with power utility preferences and has access

to a library of candidate PRs. In each period, they choose a combination of PRs that

2Lack of methods to effectively limit estimation error might be the main reason why previous research
has focused on combining only two PRs. Adding more PRs to the combination does not necessarily lead
to empirical gains. As pointed out by Tu and Zhou (2011), “theoretically, if the true optimal combination
coefficients are known, combining more than two rules must dominate combining any subset of them.
However, the true optimal combination coefficients are unknown and have to be estimated. As more
rules are combined, more combination coefficients need to be estimated and the estimation errors can
grow. Hence, combining more than two rules may not improve the performance.”
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would have maximized their pseudo OOS utility.3 While determining the combination of

PRs which optimizes the investor’s utility, the framework retains many appealing features.

Although previously proposed combination strategies share some of those features, no

other method we are aware of possesses all of them. Specifically, our approach:

i) Relies on the pseudo OOS returns of the candidate PRs. As the optimal combination

of PRs is based on OOS utility gains, nothing more than the record of the PRs’ assigned

asset weights and the subsequent pseudo OOS returns are needed for implementing our

approach. This enables combining dissimilar PRs, for example theory-based PRs and

data-driven PRs,4 while circumventing the problem of predicting moments of the PRs’

returns. As a result, our setup involves estimating fewer parameters and, hence, reduces

estimation risk.5 However, we stress that the candidate PRs themselves may or may not

use estimated (conditional or unconditional) moments of asset returns to form portfolios.

ii) Is an ensemble framework. Our approach assigns combination weights based on

the realized pseudo OOS utility of the combined PRs rather than based on their in-

3We focus on economic utility in the objective function rather than on a statistical criterion. It is well
known that statistical and economic evaluation criteria are not necessarily closely related. Leitch and
Tanner (1991) show that precise forecasts in terms of statistical criteria such as the root mean squared
error may translate into unprofitable portfolio allocations. Cenesizoglu and Timmermann (2012) corrob-
orate this finding in an application to equity premium forecasts, establishing only a weak relationship
between economic utility measures and statistical forecast accuracy.

4Similar in spirit to our idea of integrating theory-based and data-driven endeavors for asset alloca-
tion, in asset pricing, Grammig et al. (2021) developed an approach to unite theory-based and data-driven
approaches (seen as “divergings roads”).

5Alternatively, one could think of using the realized PRs’ returns and maximize an objective function
that depends on the expected moments of those returns. However, in such a two-stage approach, the
estimated moments of the PRs’ returns would be needed as inputs for choosing the combination weights.
For power utility preferences, one would have to estimate at least the first four moments (when using a
Taylor series expansion, as it is commonly done in the literature). With an increasing number of PRs,
the two-stage approach would become more and more prone to estimation error due to the prolifera-
tion of parameters. Further, in our proposed framework, down-weighting older data can be applied to
economic utility, thus directly focusing on the investor’s objective. Instead, in a two-stage approach,
down-weighting older observations would have to be applied indirectly via the estimated moments of the
PRs’ returns. Likewise, in our proposed framework, regularization to prevent overfitting can be applied
directly to the combination weights, whereas, in a two-stage approach, regularization would have to be
applied indirectly to the estimated moments. Overall, our proposed framework appears more directly
focused on the investor’s objective, less prone to estimation error and more scalable to an increasing
number of candidate PRs than a two-stage approach.
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dividually generated utility. As an analogy to building a sports team, our combina-

tion framework does not necessarily include the individually best players, but builds the

best possible team. The ensemble view automatically takes the (possibly time-varying)

inter-dependencies among the PRs’ OOS returns into account. These inter-dependencies

include correlations and higher-order co-moments. Our approach accommodates an ar-

bitrary number of candidate PRs.

iii) Allows for adaptive learning. In our approach, profitability (or, realized utility) in

the recent past might be emphasized compared to profitability generated in the more dis-

tant past by using a weighting factor. This enables adaptive learning about the optimal

combination weights and allows for rapid shifts if empirically warranted. At the level of

asset returns, Farmer et al. (2022) find short stretches of predictability for (aggregate)

stock returns by a given predictor that are interspersed with long periods showing no

evidence of predictability. Similarly, our modeling approach is designed to capture PRs,

or combinations of PRs, that are successful locally in time.

iv) Does not assume a specific data generating process (DGP) for asset returns or for

the PRs’ returns. To determine the combination weights, we do not invoke any assump-

tions regarding the return generating process.6 Hence, our combination framework can be

viewed as a controlling instance: if a candidate PR is grossly misspecified and has nothing

to contribute to the ensemble, it will not be selected to be part of the combination.

We apply our combination framework to two classic portfolio choice problems. The

first one involves allocating across the 50 largest US stocks at a monthly frequency, and

the second one involves allocating between the S&P 500 index and treasury bills at a

monthly frequency. In both applications, we entertain a pool of established and cutting-

edge candidate PRs. We compile libraries of heterogeneous PRs to enhance diversification

benefits and choose PRs that allow for long evaluation samples.

6Notice, though, that the candidate PRs may or may not make assumptions with respect to the
return process.
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Based on OOS evaluations of over forty years, we find substantial utility gains from

combining PRs. The utility generated by our combination is either higher than that

of any candidate PR or approximately as high as that of the (ex-post) best-performing

candidate PR. Our combination approach appears to outperform previously proposed

alternatives as well. Further, we empirically show the virtues of the ensemble framework

and of adaptive learning. Combination weights change rapidly over time, documenting

that different (combinations of) PRs work well at different points in time. We carry out

deeper analyses to shed light on the mechanisms at work for generating utility gains and

on the potential from extending the pool of candidate PRs. These analyses reveal that

our proposed combination method, by maximizing utility, chooses a combination of PRs

that balances predictive power of asset returns and the capability of anticipating their

variance; further, utility gains increase on average with the number of combined PRs,

implying further room for improvement by increasing the number of candidate PRs.

The applications presented in our empirical work are meant as illustrations of our

methodological framework to establish its expediency. We do not advocate any partic-

ular candidate PR and stress that other researchers or investors might prefer using our

approach with alternative sets of candidate PRs. We see the main contributions of our

study as methodological in nature. Namely, we provide a framework that: a) allows to

fully exploit the relative merits of the multitude of solutions proposed for portfolio choice

problems; b) enables to assess the incremental empirical merits (or, lack thereof) of newly

proposed PRs. That said, in our empirical analysis we consider state-of-the-art PRs that

nest established rules (e.g., GMV, MV or 1/N) as special cases. We are not aware of any

study that empirically entertains combinations of heterogeneous cutting-edge PRs.

The remainder of the paper is organized as follows. Section 2 relates our work to

the literature. Section 3 lays out our methodology, and Section 4 presents our two

applications. Section 5 offers some concluding remarks.
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2 Relation to the Literature

Our work relates mainly to two streams in the portfolio choice literature. First, our work

shares common ground with combination approaches of PRs. Along this line, Kan and

Zhou (2007), Tu and Zhou (2011) and Kan et al. (2022) developed theoretically optimal

combination strategies to maximize expected OOS performance under estimation risk for

MV portfolio choice problems. Kan and Zhou (2007) derived an optimal three-fund rule

consisting of the risk-free asset, the sample tangency portfolio, and the sample minimum-

variance portfolio, that maximizes expected OOS utility. Based on the intuition that one

simple method and one sophisticated method might optimize the bias-variance tradeoff,

Tu and Zhou (2011) combine this three-fund portfolio (and other sophisticated PRs) with

the 1/N rule. Kan et al. (2022) explore the case when there is no risk-free asset available.

Lassance et al. (2022) robustify the approach by Kan et al. (2022), considering OOS

utility volatility in addition to the OOS utility mean.

The optimal combining rules derived by the works cited above have gleaned valu-

able analytical insights into portfolio construction under estimation error, relying on the

assumption that asset returns are identically and independently multivariate normally

distributed. In contrast, as a data-driven combination approach, our proposed frame-

work does not invoke any assumptions regarding the return generating process. More

importantly, our approach is not restricted to PRs of particular designs, such as, e.g.,

MV-based rules, and allows the combination of PRs that, given their heterogeneity, could

not be combined with existing methodologies. Our method is not a competing approach

to these works, but is complementary to them: combination methods themselves repre-

sent PRs and can be included as candidate PRs in our combination approach, given that

they are applicable to the investment problem at hand. We include previously suggested

combination methods like those proposed by Kan et al. (2022) in our empirical analysis

and show that they produce enhanced performance when combined with additional PRs.
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Paye (2012) considers combinations of PRs as one possible strategy to reduce estima-

tion risk associated with MV approximations to the economic value of PRs under general

utility specifications such as power utility. He finds that the combination of estimators

can substantially reduce estimation risk. Paye (2012) determines the combination weights

based on a resampling approach, assuming identically and independently distributed re-

turns, and considers equal combination weights as an alternative. Although it is not

the focus of our paper, we consider, among others, PRs based on MV approximations as

candidate PRs for optimizing power utility. While MV approximations might be valuable

since estimations of higher moments are not available in some settings, quadratic utility

that underlies MV preferences has some counter-intuitive properties such as increasing

absolute risk aversion. Hence, in addition to taking preferences about higher-order mo-

ments into account, evaluating PRs based on MV in a power utility framework is also

desirable due to the more intuitive properties of power utility. Pettenuzzo and Ravaz-

zolo (2016) propose combining predictive densities based on their weighted individual

past performance, while we combine PRs based on their weighted jointly generated past

performance.

While approaches such as those of Tu and Zhou (2011) and Kan et al. (2022) use

the covariance matrix of returns for optimizing combination weights, we propose an ap-

proach that automatically takes the joint distribution of the PRs’ returns into account

for determining a convex combination of weights without having to estimate co-moments.

Further, our flexible combination method might unfold its full strength when combining

PRs that, due to their heterogeneity, generate substantially different allocations, since it

adaptively learns about time variation in the relative performance of candidate PRs and

about time-varying dependencies among them, thus adjusting combination weights based

on local performance.

Overall, we push the boundaries of combinations of PRs by providing an optimization
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framework that (i) is designed to mitigate estimation risk by avoiding estimation of the

PRs’ return moments; (ii) can combine PRs of any design; (iii) incorporates additional

appealing features such as adaptive learning about the combination weights, an ensemble

perspective for assigning combination weights, and direct focus on the investor’s utility.

Second, and related to (i) above, our work is related to approaches that directly opti-

mize utility instead of taking a two-stage approach with the need for estimated moments

of returns. These include parametric portfolio policies (Brandt et al., 2009; DeMiguel

et al., 2020), a boosting approach (Nevasalmi and Nyberg, 2021), a genetic programming

approach (Liu et al., 2022), a subset combination approach (Maasoumi et al., 2022) and

an approach that uses deep reinforcement learning (Cong et al., 2022). The above men-

tioned techniques involve optimizing economic utility for specific portfolio choice problems

at the individual assets level, while our approach is about maximizing utility one level

up by combining PRs. It is not obvious how the above methods can be extended to the

combination of PRs. Our work is complementary to these approaches as well since they

can be included as candidate PRs in our framework, given that they are applicable to

the investment problem at hand.

3 Methodology

3.1 Basic structure

Suppose that we have a set ofM candidate PRs at our disposal, indexed asm = 1, . . . ,M .

To set the stage for the combination, let us pin down the ingredients of our setting. For a

typical point in time s, each PR assigns weights to the N assets, indexed as n = 1, . . . , N ,7

based on information observed through s−1, the date of portfolio construction. We denote
7In this paper, we consider only PRs that allocate across the same investment opportunity set.

However, our framework allows for PRs that allocate across different investment opportunity sets with
partial or no overlap of assets. For example, one PR could allocate across different stocks, while another
PR could allocate across commodities.
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the (exogenously) assigned asset weights of the m-th PR for time s as ω(−s)
m,s , where ω(−s)

m,s

is an N × 1 column vector,
(
ω
(−s)
m,s,1, . . . , ω

(−s)
m,s,N

)′
. The superscript (−s) indicates that

information revealed at time s are not available for determining the portfolio allocation

at time s− 1.

The N × 1 column vector of asset gross returns measured over the period [s − 1 : s]

(that is, one month in our applications) is indicated as R̃s =
(
R̃s,1, . . . , R̃s,N

)′
, where

R̃s,n = 1 + r̃s,n,8 and r̃s = (r̃s,1, . . . , r̃s,N)
′
. Then, the pseudo OOS gross return of the

m-th PR at time s can be expressed as:

Rm,s = ω(−s)
m,s

′

R̃s. (1)

The investor’s optimization problem is to maximize the conditionally expected utility

of the portfolio (gross) return Rp,t based on information through time t− 1 as a function

of the combination weights {wm,t}Mm=1 assigned to the PRs:

arg max
{wm,t}Mm=1

Et−1 [U(Rp,t)] = Et−1

[
U

(
M∑
m=1

wm,tRm,t

)]
, (2)

where U (·) denotes utility. We treat the combination weights as constant through time

t. Hence, the combination weights that maximize the investor’s conditional expected

utility at a given point in time are the same for all previous points in time. We can

thus rewrite (2) as an unconditional optimization problem. Suppose we are at time t− 1

and have access to a record of pseudo OOS returns generated by the PRs, spanning the

interval between τ and t − 1. Then, we can replace the expected utility in (2) with its

sample counterpart, i.e., the sum of period-by-period realized utilities. The optimization

8Depending on the portfolio choice problem at hand, the returns may be defined as raw (total) or
excess returns.
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problem, then, becomes:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

U

(
M∑
m=1

wmRm,s

)
, (3)

where wt = (w1,t, . . . , wM,t)
′ and w∗τ :t = w∗t . This unconditional formulation of the

optimization problem bypasses the need for estimating (co-)moments of the PRs’ returns,

similarly to the framework of Brandt et al. (2009).9

If there is some persistence in economic states, more recent data will likely embed more

relevant predictive information than older ones, since they stem from a more similar

market or economic environment. To entertain such plausible economic dynamics, we

allow realized joint utilities to receive different weights in the optimization. Specifically,

we maximize the weighted past performance jointly generated by the PRs:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

αt−1−s · U

(
M∑
m=1

wmRm,s

)
, (4)

subject to
M∑
m=1

wm = 1; wm ≥ 0, m = 1, . . . ,M , (5)

where α denotes a (fixed) forgetting factor for weighting past profitability, and the restric-

tions (5) impose a convex combination of the candidate PRs. By allowing for exponential

down-weighting older performance (and repeating the optimization at each point in time),

we select the combination weights in an adaptive manner. We, thus, include the possibil-

ity of learning about the relative strengths of the candidate PRs over specific stretches of

time, enabling more rapid weight changes than in the standard unweighted formulation

in (3). We will discuss the forgetting factor and the weight constraints in more detail in

9As discussed earlier in Section 2, while we share common ground with Brandt et al. (2009) regard-
ing this aspect, our framework is considerably different from theirs, since our objective is to allocate
combination weights across PRs rather than estimating coefficients associated with asset characteristics
and mapping those coefficients into individual asset weights.
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Sections (3.3) and (3.4), respectively.

For an investor with power utility preferences,10 we can state the optimization problem

(4) more specifically as:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

αt−1−s ·

(
M∑
m=1

wmRm,s

)1−γ

1− γ
, (6)

where γ (γ > 0, γ 6= 1) denotes the relative risk aversion coefficient.11 Note that utility

and certainty equivalent returns are interchangeable in this optimization framework since

the latter is a monotonic transformation of the former.

For certain purposes such as implementing trades and calculating transaction costs,

it is necessary to know the asset weights that result from combining the PRs. With the

optimized combination weights in hand, we can back out the implied weights of the N

assets. These weights ω∗s are linear combinations of the asset weights determined by the

PRs (summarized in matrix Ωs) and the optimized combination weights w∗s :

ω∗s
[N×1]

= Ωs
[N×M ]

· w∗s
[M×1]

, (7)

10By assuming power utility preferences at the level of combining PRs, preferences about higher-
order moments and tail risk properties are taken into account. This holds also true for the case where
candidate PRs in the library do not optimize power utility but, for example, use MV approximations
or the allocation does not rely on any optimization framework at all. If we were to require candidate
PRs to optimize power utility in the first place, we would dismiss a large portion of promising PRs from
the outset. PRs that have not been designed to maximize power utility preferences might nonetheless
contribute to the ensemble.

11We note that power utility fails to exist if the gross return approaches zero. That is, U −→ −∞ if
R −→ 0. The PRs we use in our empirical work avoid extreme returns and, hence, this is empirically
not a concern. To theoretically ensure that power utility exists, we had to restrict to candidate PRs that
put appropriate constraints on the asset weights.
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where

Ωs =


ω
(−s)
m=1,s,n=1 . . . ω

(−s)
m=M,s,n=1

... . . . ...

ω
(−s)
m=1,s,n=N . . . ω

(−s)
m=M,s,n=N

 .

The usefulness of backing out the individual assets weights can easily be seen when

the positions for a certain asset implied individually by the candidate PRs are partly or

fully offsetting each other. An execution desk trades the individual asset positions as

implied by the combination, rather than the implied positions of different PRs on their

own, thereby saving transaction costs.

3.2 Our combination framework as a stacking algorithm

Our proposed combination (6) can be classified as a stacking algorithm. Stacking is a well-

studied meta-learning algorithm for combining estimators in the machine learning and

statistics literature (Wolpert, 1992; LeBlanc and Tibshirani, 1996; Breiman, 1996; Yang,

2001; Van der Laan et al., 2007; Polley and Van Der Laan, 2010). Stacking algorithms

were developed to minimize cross-validated risk defined by some statistical criterion. We

adapt this method to maximizing cross-validated utility rather than optimizing some

statistical loss criterion and extend it to accommodate exponential down-weighting of

older performance for obtaining combination weights based on the local performance of

(combinations of) PRs.

Stacking is an ensembling method; that is, it assesses the cross-validated risk/utility of

the combined candidate estimators (here, the PRs) rather than assessing their risk/utility

from a stand-alone perspective. Hence, combination weights assigned according to (6)

are based on an ensemble perspective, implicitly taking time-varying inter-dependencies

among PR returns into account. With power utility preferences, the entire joint distri-

bution of PR returns is automatically used in (6) for maximizing combination weights.
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Another important feature of stacking is that it uses cross-validation to avoid overfit-

ting. Our combination is based on pseudo OOS returns. To accommodate the time-series

structure of the data, standard K-fold cross-validation cannot be applied. Our approach

is akin to leave-one-out cross-validation by omitting information revealed at time s for

portfolio construction at time s − 1; see (1). Figure 1 illustrates the generic mechanism

of leave-one-out-cross-validation. In our context, at each point in time and for a given

PR, the blue dots represent the information used for next period’s portfolio allocation,

and the red dots represent the implied pseudo OOS (gross) returns. Our approach relies

on maximizing the utility generated by the red dots.

Figure 1: Schematic illustration of leave-one-out-cross-validation. The illustration is adopted
from Hyndman and Athanasopoulos (2018).

If we were to include information revealed at time s for allocation at time s− 1, the

resulting returns would be in-sample returns. In such a setting, the combination would

typically assign the entire weight to the PR with the highest in-sample returns. However,

PRs with high in-sample returns might generate poor OOS results due to overfitting.

Stacking is a genuine combination rather than a selection method. This means that,

even asymptotically, positive combination weights can be spread among different PRs

rather than being assigned to the most successful PR in the library. This feature is

appealing for the realistic case where none of the candidates in the library captures the

true data generating process. If a single candidate PR, however, dominates any possible
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combination, such PR will get the entire weight. Hence, selection is nested as a special

case.

Although stacking does not impose any restrictions on the combination weights per

se, convex combinations of estimators were found to provide greater stability of the final

estimator (see, e.g., Breiman, 1996; Van der Laan et al., 2007).

Stacking algorithms have a strong statistical foundation. Under certain conditions,

Van der Laan et al. (2007) established their asymptotic oracle performance, which means

that the learning algorithm will perform asymptotically exactly as well (with respect to

the defined evaluation criterion) as the best possible ex-post choice for a given dataset

among the set of weighted combinations of the estimators. Beyond these theoretical

results, learning algorithms based on stacking were shown to be adaptive and robust

estimators for small samples in both artificial and real datasets (Wolpert, 1992; Breiman,

1996; LeBlanc and Tibshirani, 1996; Van der Laan et al., 2007; Polley and Van Der Laan,

2010). In most cases, they perform as well or even better than the ex-post best candidate

estimator. As a stacking algorithm, our combination framework relies on a methodology

with excellent statistical properties.

3.3 The forgetting factor

The exponential forgetting factor α ≤ 1 in (6) emphasizes the recent history of past

performance. In our empirical work, we adaptively choose the value of α from the grid

Sα = {0.90:0.01:1.00}. The lower the value of α, the more we down-weight performance

in the more distant past. For example, when working with monthly data, if α = 0.99,

economic utility three years ago receives approximately 70% as much weight as economic

utility last month. We take α = 0.90 as the lower boundary of the grid since this value

implies extremely fast forgetting: if α = 0.90, utility three years ago receives only about

2% as much weight as utility last period. The effective window size is 1/(1−α) and, hence,
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10 months in case of α = 0.90.12 The upper bound α = 1 implies no down-weighting of

older data and, hence, standard recursive window estimation is nested as a special case.

FLEXPOOL denotes the combination where the value of α is determined in each

period from the grid Sα. In the empirical analysis, we consider two additional benchmark

combinations: the first one is STATPOOL, where we set α = 1. The second one assigns

equal weights to the PRs, irrespective of their past performance.

By allowing for down-weighting older performance, the combination weights can

rapidly adjust to changing environments, if empirically warranted. Another advantage

of the forgetting factor modeling is that changing dynamics are captured parsimoniously

using only one parameter. This makes the approach less prone to estimation error than

parameter-rich alternatives such as regime-switching models. For each point in time,

we choose the optimal time-dependent value αt from the grid Sα as the one which has

produced the highest utility in the past from τ ∗ to t− 1:

α∗t = arg max
α∈Sα

t−1∑
s=τ∗

U
[(

w∗t−1 (α)
)′

Rs

]
, (8)

where τ ∗ = τ + τ0, and τ0 denotes the number of observations set aside for initial opti-

mization of the combination weights, Rs = (R1,s, R2,s, . . . , RM,s)
′, and w∗t−1 (α) denotes

the optimal combination weights according to (6), conditional on a given value of α. Note

that we are using down-weighting when maximizing the combination weights in (6) for a

given value of α. However, we do not use down-weighting for choosing between different

values of α based on recursive evaluation in (8).13

Rolling windows can be seen as an ad hoc alternative to exponential down-weighting

12Note that
∞∑
s=0

αs = 1
1−α for α < 1.

13Using recursive window estimation for choosing between different values of the forgetting factor
follows, among others, Beckmann et al. (2020) and Adämmer and Schüssler (2020), and is guided by
our endeavor to keep the framework as parsimonious as possible. Adding another forgetting factor for
choosing between different values can easily be accomplished (Bernaciak and Griffin, 2022).
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for accommodating structural breaks by allowing for rapid changes in the combination

weights. Exponential down-weighting with forgetting factors estimated from the data,

however, is a more sophisticated and robust choice.14

3.4 Weight restrictions and additional regularization

As outlined above, one motivation for imposing a convex combination of PRs is stability

of the stacking algorithm. Another motivation is that we wish to ensure that any imposed

restrictions on the assets weights at the level of the candidate PRs (e.g., no short sales,

restrictions on sector weights, etc.) also hold at the level of the combined PRs.

Although our proposed combination approach uses pseudo OOS returns and is parsi-

moniously parameterized, estimation risk of the combination weights could nevertheless

be a concern in finite samples. There is no guarantee that the optimized combination

weights will outperform simple benchmarks such as equally weighted PRs. In our empiri-

cal work with moderate numbers of candidate PRs (five in our first application and six in

our second application), estimation error of the combination weights does not appear to

be a major concern.15 In our applications, we do not impose any restrictions in addition

to convex combination weights. Nevertheless, in applications with higher numbers of can-

didate PRs, it might be beneficial to impose additional regularization on the combination

weights. For example, one could choose time-varying subsets of equally-weighted PRs.

In each period, we would select a subset of k ≤ M PRs and assign equal weights 1/k

to the PRs of the subset and discard the remaining PRs for this period.16 Technically,

this involves adding an `0-constraint (9) on the combination weights and enforcing the

14Giraitis et al. (2013) find exponential down-weighting with a data-driven forgetting factor to be the
most robust choice for accommodating structural change in time series across extensive simulations and
empirical exercises.

15In both applications we will find that utility rises on average with the number of included PRs.
16In the context of forecast combinations, equally-weighted subsets were found to perform well in

many studies (see, e.g., Diebold and Shin, 2019; Dong et al., 2022).
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non-zero weights to be equal by imposing (10):

‖w‖0 = k (9)

wm ∈
{

0,
1

k

}
, m = 1, . . . ,M , (10)

where ‖w‖0 =
M∑
m=1

1 (wm 6= 0) counts the number of the non-zero combination weights,

and 1 (·) denotes the indicator function.17 Imposing the additional constraints (9) and

(10) further mitigates estimation risk, in particular if k � M . Assigning equal weights

to all PRs at disposal is nested as a special case if k = M . The tuning parameter k would

be adaptively chosen from a grid as we do for selecting the (time-dependent) value of α.18

4 Empirical Work

4.1 Application to a cross-section of stocks

4.1.1 Investment universe and empirical study design

The investment universe in this application comprises the largest 50 US stocks. Their

monthly excess returns are constructed from CRSP data. We use data from 1957:01 to

2020:12 and only include stocks listed in NYSE, NASDAQ, or AMEX with a share code

of 10 or 11. At the beginning of a given month t, the largest 50 stocks (in terms of

market value) with non-missing monthly returns in the previous 120 months constitute

17Although the cardinality constraint makes the problem NP-hard, state-of-the-art algorithms can
solve such types of problems rapidly even for high dimensions (Bertsimas et al., 2016).

18A complementary robustification strategy to additional weight constraints could be using block
bootstrap up to a given point in time to estimate combination weights at said time as proposed by
Bonaccolto and Paterlini (2020) and Kazak and Pohlmeier (2022). While such a strategy could still
generate adaptive combination weights, the possibility of rapid changes in the combination weights would
be partially lost. However, block bootstrap methods could be extended to accommodate exponential
down-weighting performance longer ago by introducing one additional tuning hyperparameter.
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the investment universe.19 20 Note that the largest 50 stocks can change from month to

month, that is, the investment universe is dynamic.

Each candidate PR that we entertain in our library has to assign weights to the

50 stocks at the beginning of each month. We obtain the first OOS portfolio returns

in 1967:01. We set aside the first 60 OOS returns for initial optimization of the PRs’

weights according to (6) and another 60 months for initial tuning of the forgetting factor

α according to (8). Our first OOS evaluation takes place on January 1977. We, then,

move forward and run the optimization based on an expanded sample of 61 OOS portfolio

returns and choose the value of the forgetting factor also based on one additional observa-

tion. We proceed in a recursive manner and end up with an evaluation sample spanning

the 1977:01 to 2020:12 period. We consider a power utility investor with a relative risk

aversion of γ = 3. Our setup considers only risky assets. If we were to include a risk-free

asset, this could easily be accomplished by adding a candidate PR that is represented by

a vector of zeros, since the returns are defined as excess returns in this application.

4.1.2 Candidate PRs

We consider the following five candidate PRs:

• 1/N:

This PR assigns equal weights to all assets. The 1/N rule does not exploit any sam-

ple information and, hence, avoids estimation error. It has been found to outper-

form a broad range of estimated optimal portfolios across many empirical datasets

(DeMiguel et al., 2009; Yuan and Zhou, 2022).

• Volatility timing (VOLTIME):

19In the (rare) cases where the return of a stock is missing for month t, we set the excess return to
zero.

20The choice of a rolling estimation window of 120 months follows, among others, DeMiguel et al.
(2009) and Kan et al. (2022).
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Kirby and Ostdiek (2012) propose a volatility timing strategy where the weights

are given by:

ωt+1,n =
(1/σ̂t+1,n)η

N∑
n=1

(1/σ̂t+1,n)η
, n = 1, ..., N , (11)

where σ̂t+1,n denotes the estimated conditional variance of the n-th risky asset for

time t + 1, using a rolling window of past returns from t − 119 to t. This PR

ignores any sample information about conditional means and covariances. The

tuning parameter η ≥ 0 controls timing aggressiveness. Kirby and Ostdiek (2012)

consider the values η = 1, 2, and 4. We set η = 4.

• Maximizing expected OOS utility:

Kan et al. (2022) developed theoretically optimal combination portfolios which have

the highest expected OOS utility for a MV investor in a setting without a risk-

free asset. Their proposed approach involves combining the GMV portfolio with

a sample zero-investment portfolio, where estimation risk is taken into account to

control the exposure to the sample zero-investment portfolio. If the exposure to the

sample zero-investment portfolio is set to zero, the GMV is nested as a special case.

The combination method proposed by Kan et al. (2022) can be applied together with

refined estimates of expected returns and expected (co-)variances to form optimal

portfolios by using shrinkage estimators or the single factor structure. We consider

the following two specifications of their approach:21

– Kan et al. (2022) combined with MacKinlay and Pástor (2000) (KWZ - MP):

MacKinlay and Pástor (2000) exploit the implications of an asset pricing model

with a single risk factor for estimating expected returns. By doing so, only

21We use estimation windows of 120 months and set the risk aversion coefficient to 3 in both PRs.
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few parameters have to be estimated, reducing estimation risk.22

– Kan et al. (2022) combined with Ledoit and Wolf (2004) (KWZ - LW):

Ledoit and Wolf (2004) propose a shrinkage estimator of the covariance matrix

involving a linear combination of the sample covariance matrix and the identity

matrix.23 24

• Galton-Shrinkage (GALTON):

Barroso and Saxena (2022) propose a shrinkage estimator that exploits the structure

of past OOS forecast errors to correct the expected returns and expected (co-)

variances as inputs for portfolio optimization. They use the cleansed inputs to

compute the Galton MV portfolio whose weights are the result of simple Markowitz

optimization applied to corrected inputs.25

The key formula for correcting the optimization inputs is:

Zt = ĝ0 + ĝ1Zt−1, (12)

where, for any variable Z of interest (mean returns, variances or pairwise correla-

tions), Zt−1 denotes its historical estimate at time t − 1 calculated from a rolling

window of 60 observations. Zt is the cleansed portfolio input for t. Fama-MacBeth

regressions are used to estimate the Galton shrinkage coefficients g0 and g1 for the

means, variances and pairwise correlations. To do so, a large estimation universe

is used, comprising the record of the largest 500 US stocks at each point in time

22The weights for this rule are given by Equation 51 in Kan et al. (2022).
23The weights for this rule are given by Equation 43 in Kan et al. (2022).
24KWZ-MP and KWZ-LW are theory-based combination rules relying on the assumption that returns

are identically and independently multivariate normally distributed. Although this assumption might not
be literally true, these PRs might nevertheless contribute to the ensemble. Our data-driven framework
measures to which extent these PRs provide incremental empirical value to other candidates in the pool.

25The weights for this rule are computed according to Equation 7 in Barroso and Saxena (2022).
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to learn from.26 For running the Fama-MacBeth regressions, we set a window of

12 ex-post realizations, and to initialize the Galton coefficients, we set aside one

additional learning period of 108 months.27 28

The slope coefficient in (12) controls the shrinkage intensity. At one extreme, if

its estimated value equals 1, the corrected input equals the historical estimates,

that is, the uncorrected estimates. At the other extreme, if its estimated value

equals 0, the historical estimates are found to be completely unreliable, and the

corrected inputs are set to the grand mean of the returns, variances or pairwise

correlations observed up to time t.29 Let g1,mean, g1,var and g1,corr denote the Galton

slope coefficients for the means, variances, and correlations, respectively. Different

extreme values of g1,mean, g1,var, and g1,corr produce well-known strategies as special

cases, namely the 1/N portfolio for g1,mean = g1,var = g1,corr = 0, the sample

GMV for g1,mean = 0, g1,var = g1,corr = 1, and the sample Markowitz portfolio for

g1,mean = g1,var = g1,corr = 1.

4.1.3 Results

Table 1 reports the results for the candidate PRs and the combined PRs. Given our focus

on the investor’s utility, the certainty equivalent return (CER) seems to be a natural

choice for measuring portfolio performance. We report (monthly) CER values30 without

transaction costs as well as with proportional transaction costs (CERTC) of 20 basis

26Barroso and Saxena (2022) consider both larger and smaller estimation universes and find similar
results.

27See Equations 9 to 13 in Barroso and Saxena (2022) for details relating to the estimation of the
Galton coefficients.

28In the notation of Barroso and Saxena (2022), H = 60, E = 12 and L = 108.
29Note that we restrict the slope coefficients to lie between 0 and 1.
30CER values are computed over the evaluation sample from τ∗∗ to T as

CER =

{
(1− γ) 1

T − τ∗∗ + 1

T∑
s=τ∗∗

U
(
w∗s (α

∗
s)
′
Rs

)} 1
1−γ

− 1. (13)
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points (bps).31 We further report the (monthly) Sharpe ratio without transaction costs

(SR) and with proportional transaction costs (SRTC) of 20 bps.32 Avg. TO indicates the

average monthly turnover.

The key findings from Table 1 can be summarized as follows. FLEXPOOL generated

the highest CER value and Sharpe ratio before and after transaction costs, both com-

pared to any candidate PR as well as compared to the alternative combination schemes.

FLEXPOOL did substantially better than STATPOOL in terms of CER values and the

SR. This finding illustrates the importance of emphasizing recent utility for assigning

combination weights. More distant utility was substantially down-weighted throughout

the sample with a forgetting factor α that fluctuated between 0.93 and 0.96 (see Figure

2). FLEXPOOL generated substantially higher utility gains than equally weighted PRs

as well. Figure 3 depicts the cumulative utility differences between FLEXPOOL and

equally weighted PRs, illustrating that the outperformance cumulated continuously over

time rather than being due to few short-lived episodes. The utility differences are statisti-

cally significant according to the one-tailed test of Diebold and Mariano (1995) at the 5%

significance level. Similarly, the differences in Sharpe ratios are statistically significant

according to the one-tailed test of Ledoit and Wolf (2008) at the 5% significance level.

This is quite remarkable, given that the equally weighted combination is roughly on par

with the best-performing candidate PRs and, hence, provides a tough benchmark.

31The choice of 20 bps follows Kan et al. (2022).
32CER values are more appropriate as an evaluation metric than the Sharpe ratio in our power utility

framework that aims to exploit time-varying investment opportunities; see, e.g., Bianchi and Guidolin
(2014). Nevertheless, we report the Sharpe ratio, given its popularity in performance evaluation of asset
allocation strategies.
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Figure 2: Evolution of the selected value of the forgetting factor α in FLEXPOOL.

Which combination weights were assigned to the different PRs and how did they

change over time? Figure 4 provides answers. The subplot in the upper left corner of

Figure 4 depicts the weight shares of the PRs averaged over the evaluation sample. The

blue (red) bars represent the weight shares of FLEXPOOL (STATPOOL). The remaining

subplots show the evolution of PR weights over time. The blue (red) lines indicate the

combination weights of FLEXPOOL (STATPOOL). STATPOOL essentially splitted the

combination weights between GALTON and KWZ-MP, while the weights in FLEXPOOL

were broadly dispersed, with weight shares between 13.68% (GALTON) and 25.09%

(KWZ-MP) over the evaluation sample. Interestingly, GALTON received the lowest

average weight in FLEXPOOL, even though it was the candidate PR with the highest

CER value over the evaluation sample. This result is a manifestation of the ensemble

view, where (time-varying) inter-dependencies among PR returns are taken into account.

The optimal combination weights of STATPOOL are more persistent than those of

FLEXPOOL, where the combination weights change rapidly and where frequently the

entire weight is assigned to one candidate PR. For example, VOLTIME received a high
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weight after the burst of the dotcom bubble and its aftermath as well as during the

subprime crisis. The 1/N rule prevailed in the relatively tranquil period in the mid-to-

late 1990s. We next conduct deeper analyses to shed more light on the mechanisms at

work that produce the utility gains of FLEXPOOL.

Table 1: Summary of results.
The table reports our results for the evaluation sample from 1977:01 to 2020:12. It contains monthly
CER values without transaction costs and with proportional transaction costs (CERTC) of 20 bps for a
power utility investor with relative risk aversion of γ = 3. As a further performance measure, the table
shows the monthly Sharpe ratio before transaction costs (SR) and after proportional transaction costs
of 20 bps (SRTC). Avg. TO indicates the average turnover of the evaluation sample.

Candidate PRs CER CERTC SR SRTC Avg. TO

1/N 0.0035 0.0033 0.1479 0.1442 0.0782
VOLTIME 0.0051 0.0049 0.1954 0.1898 0.1015
KWZ-MP 0.0046 0.0041 0.1790 0.1663 0.2464
KWZ-LW 0.0045 0.0034 0.1772 0.1469 0.5717
GALTON 0.0052 0.0046 0.2029 0.1853 0.3100

Combined PRs

FLEXPOOL 0.0068 0.0060 0.2390 0.2168 0.4184
STATPOOL 0.0045 0.0040 0.1832 0.1681 0.2650
EQUAL WEIGHTS 0.0050 0.0046 0.1992 0.1878 0.1964
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Figure 3: Cumulative utility differences between FLEXPOOL and equally weighted PRs.
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Figure 4: Combination weights.
The subplot in the upper left corner shows the weight shares of FLEXPOOL (blue bars) and STATPOOL
(red bars), averaged over the evaluation sample from 1977:01 to 2020:12. The remaining subplots show the
evolution of the combination weights of the candidate PRs. The blue (red) lines indicate the combination
weights in FLEXPOOL (STATPOOL).
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4.1.4 Deeper analyses

Relationship between the number of combined PRs and utility gains

How does the performance of FLEXPOOL depend on the number of combined PRs? So

far, we have only reported the result for the case where we combine all five considered

PRs. How would the results change if we were to combine subsets of two, three or four

PRs? Figure 5 depicts the CER values as a function of the number of combined PRs.

The blue diamonds indicate the generated CER value produced by a particular subset

of combined PRs. For example, in case of the subset with two combined PRs, there are(
5
2

)
= 10 possible combinations. The red square shows the average CER value for a given

number of combined PRs. Figure 5 illustrates that, on average, the CER values increase

with the number of combined PRs.
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Figure 5: CER values as a function of the number of combined PRs using FLEXPOOL.
The blue diamonds indicate the generated CER values of all possible combinations for a given number of
combined PRs. The red square represents the average CER value for a given number of combined PRs.

The highest CER value (0.0058) in the subset of two PRs is achieved by the com-

bination of GALTON and KWZ-LW, the lowest performance (0.0032) is generated by
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combining the 1/N rule with KWZ-LW. In the subset with three rules, the highest CER

value (0.0069) is achieved by the combination of VOLTIME, KWZ-MP and KWZ-LW.

The lowest performance (0.0047) among the subset with three combined rules is gener-

ated by the 1/N rule, GALTON and KWZ-MP. In the subset with four combined PRs,

the highest CER (0.0068) is achieved when the 1/N rule is left out, and the lowest per-

formance (0.0054) when GALTON is discarded. Note that the CER value for all subsets

with four PRs is higher than that of the best candidate PR (0.0052).

The result that the CER values increase on average with the number of combined PRs

illustrates the benefit of diversification across more than only two PRs. It also indicates

that there is still room left for improving utility gains by including further PRs that

contribute different aspects to the library. While the five PRs in our library differ in

how they process information into asset weights, all of them rely solely on price data

as information. PRs that exploit asset characteristics, e.g., by methods of Freyberger

et al. (2020), Gu et al. (2020) or DeMiguel et al. (2020), could be useful extensions in

the library. Similarly, including PRs that represent different factor portfolios such as

momentum, growth and value appears to be of high interest as well. An extended pool of

PRs might also be beneficial in terms of reducing transaction costs since trades implied

by different PRs might partly offset each other.

Predictive power and risk management

Each PR, no matter how it is constructed, provides a record of asset weights and implied

OOS returns. To delve deeper into the mechanisms of our combination framework, we

exploit the record of asset weights by analyzing their relationship to the implied OOS

returns. Concretely, we look at statistics on the predictive power and risk management

skills of the candidate and combined PRs. As a proxy of predictive power, we estimate

Spearman’s rank correlation coefficient ρ̂SP
(
ω∗∗, ˜̃r) as a robust correlation measure, with
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ω∗∗ =


ω∗1977:01

...

ω∗2020:12

 and ˜̃r =


r̃1977:01

...

r̃2020:12

 ,

where ω∗∗ denotes the asset weights implied by the PRs and the combination weights

computed according to (7),33 stacked from beginning to end of the evaluation sample.

With N = 50 assets and an evaluation sample that comprises 528 months (1977:01 to

2020:12), the vector ω∗∗ has length 50 × 528 = 26, 400. Similarly, ˜̃r denotes the stacked

pseudo OOS (excess) returns generated by the N = 50 assets.

The intuition behind the rank correlation ρ̂SP (ω∗∗, ˜̃r) is the following: a PR will assign

a positive (negative) weight if the expected return of an asset is positive (negative).

Hence, ρ̂SP
(
ω∗∗, ˜̃r) approximates the overall predictive power of a PR. A high positive

correlation indicates high predictive power.

Regarding risk management skills, proxied by a PR’s capability of controlling the

variance of its returns, a PR assigns a low (high) squared weight ω∗,2s,n to the n-th asset

if the expected squared return of the n-th asset is high (low) for time s. Likewise, for

a pair of assets p and q (p 6= q), a PR takes a high (low) cross-exposure ω∗s,pω∗s,q when

the product of the associated asset returns is expected to be low (high). Based on this

intuition, we calculate Spearman’s rank correlation ρ̂SP
(
ω∗∗∗,

˜̃̃
r

)
, where

33For candidate PRs and the equally weighted benchmark combination, the optimal weights w∗s in
(7) are replaced by assigning the entire weight to the said candidate PR and equal weights, respectively.
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ω∗∗∗ =



ω∗1977:01,n=1 × ω∗1977:01,n=1

... . . . ...

ω∗1977:01,n=1 × ω∗1977:01,n=50

... . . . ...

ω∗1977:01,n=50 × ω∗1977:01,n=50

... . . . ...

ω∗2020:12,n=1 × ω∗2020:12,n=1

... . . . ...

ω∗2020:12,n=1 × ω∗2020:12,n=50

... . . . ...

ω∗2020:12,n=50 × ω∗2020:12,n=50



and ˜̃̃r =



r̃1977:01,n=1 × r̃1977:01,n=1

... . . . ...

r̃1977:01,n=1 × r̃1977:01,n=50

... . . . ...

r̃1977:01,n=50 × r̃1977:01,n=50

... . . . ...

r̃2020:12,n=1 × r̃2020:12,n=1

... . . . ...

r̃2020:12,n=1 × r̃2020:12,n=50

... . . . ...

r̃2020:12,n=50 × r̃2020:12,n=50



.

The rank correlation ρ̂SP

(
ω∗∗∗,

˜̃̃
r

)
approximates the ability of a PR to control the

variance of the generated returns and can thus be seen as a proxy of risk management

skills. The more negative the correlation is, the better are the PR’s risk management

skills.

Table 2 summarizes the results for predictive power and risk management skills.

FLEXPOOL has by far the highest predictive power with an estimated rank correla-

tion coefficient of 0.0162, which is different from zero at the 1% significance level.34

Interestingly, FLEXPOOL achieves significant predictive power even though none of the

candidate PRs has significant predictive power when measured over the entire evalua-

tion sample. Key are rapidly shifting combination weights to (combinations of) PRs

with predictive power which is local in time. VOLTIME exhibits by far the best risk

34As one might expect, the magnitudes of the correlations are fairly low, being consistent with a low
degree of predictability.
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management skills. When maximizing economic utility, FLEXPOOL implicitly strikes a

balance between predictive power and risk management, partly sacrificing VOLTIME’s

risk management skills to achieve enhanced predictive power.

Table 2: Predictive power and risk management skills.
Spearman’s rank correlation ρ̂SP

(
ω∗∗, ˜̃r) approximates predictive power, and Spearman’s rank correla-

tion ρ̂SP
(
ω∗∗∗,

˜̃̃
r

)
approximates risk management skills. The p-values to the null that the correlation

coefficient equals zero are shown underneath the correlation estimates in parentheses.

Candidate PRs ρ̂SP

(
ω∗∗, ˜̃r) ρ̂SP

(
ω∗∗∗,

˜̃̃
r

)
1/N − −

VOLTIME − 0.0014
(0.8259)

−0.0525
(0.0000)

KWZ-MP 0.0042
(0.4932)

−0.0070
(0.2552)

KWZ-LW 0.0030
(0.6234)

0.0088
(0.1527)

GALTON 0.0074
(0.2283)

0.0076
(0.2162)

Combined PRs

FLEXPOOL 0.0162
(0.0085)

−0.0141
(0.0223)

STATPOOL 0.0037
(0.5506)

0.0003
(0.9617)

EQUAL WEIGHTS 0.0064
(0.2996)

−0.0126
(0.0401)

4.2 Application to market timing

4.2.1 Investment universe and empirical study design

In this application we consider an investor endowed with power utility preferences and

relative risk aversion of γ = 3 who can, in each month, allocate their wealth between the

S&P 500 index and three-month US treasury bills. We restrict the weight allocated to
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stocks to lie in the range [0; 1.5] and therefore ensure that any considered PR adheres

to these weight restrictions. Our evaluation period spans from 1977:01 to 2020:12. Each

PR generates the first OOS return in 1967:01 and we use 60 months of OOS returns for

the initial optimization of combination weights. We set aside another 60 observations for

initial tuning of the forgetting factor α. CER values are computed based on total returns

in this application.

4.2.2 Candidate PRs

We consider a diverse set of six different PRs. The first three PRs are based on strategies

that exploit Bayesian predictive densities of next period’s excess return y, that is, the

return on the S&P 500 (including dividends) in excess of the risk-free rate rf . Bayesian

predictive densities of excess returns are attractive choices as a basis for market timing

decisions, given their capability of accommodating parameter and model uncertainty as

well as of using time-varying parameters (TVP) and stochastic volatility (SV). In the

context of return predictability, Bayesian predictive densities have been used by, among

others, Dangl and Halling (2012), Johannes et al. (2014) and Pettenuzzo and Ravazzolo

(2016). While the first three PRs in our library differ with respect to specific choices that

are relevant for computing the respective Bayesian predictive densities, we can present

all of them in canonical form. These PRs solve the investment problem by directly

maximizing the conditional expected utility of next period’s wealth Wt+1:

arg max
ωt+1∈[0;1.5]

Et

[
U(Wt+1)|Dt

]
= (14)

arg max
ωt+1∈[0;1.5]

∫
R̃1−γ
t+1

1− γ
p
(
yt+1|Dt

)
dyt+1, (15)

where p (yt+1|Dt) denotes a Bayesian predictive density for the excess return y in t+1

based on the information set available at time t. The information set Dt comprises the
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returns and predictors of the excess return that can be observed until t as well as the

prior choices in t = 0. As power utility does not depend on wealth, we can set Wt = 1

and proceed with the gross returns in (15). Let R̃t+1 denote the gross total return in t+1,

where the total return comprises the excess return y and the risk-free rate rf . Further,

let ωt+1 denote the weight that is allocated to the risky asset for time t+1. We maximize

the conditional expected utility by approximating (15), based on B = 100, 000 potential

realizations y(b)draw,t+1, b = 1, . . . , B, of the excess return in t+1 from the predictive density

p (yt+1|Dt) :

arg max
ωt+1∈[0;1.5]

1

B

B∑
b=1


[
ωt+1

(
1 + rft+1 + y

(b)
draw,t+1

)
+ (1− ωt+1)

(
1 + rft+1

)]1−γ
1− γ

 . (16)

We set γ = 3.35 To obtain a Bayesian predictive density for the excess returns, we

have to impose some structure on the return generating process. We assume the dynamics

of the excess return to be given by TVP regression models with the following structure:

yt+1 = X′tθt + εt+1, εt+1 ∼ N (0, υt+1) (17)

θt = θt−1 + ξt, ξt ∼ N (0,Ξt) , (18)

where Xt denotes the vector of predictive variables observed in t. This vector con-

tains, depending on the specific setting, a subset of twelve predictor variables from Welch

35Note that the risk aversion coefficient for candidate PRs could be different from the value of the
risk aversion coefficient used for optimizing combination weights in (6).
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and Goyal (2008).36 Let θt denote the vector of (unobserved) time-varying coefficients.

The observational error εt+1 is assumed to be normally distributed with mean zero and

(unknown) and time-varying variance υt+1. The time-varying coefficients are assumed to

evolve according to a multivariate random walk without drift. We initialize the coeffi-

cients θ0 with a diffuse conditional normal prior centered around zero.

The random shocks ξ are assumed to be multivariate normal with (unknown) and

time-varying system covariance matrix Ξt. Conditional on the observational variance

and the system covariance, standard Bayesian methods for state-space models using the

Kalman filter can be applied to estimate the coefficients θt and to compute the predictive

distribution of the returns. The observational variance and the system covariance are,

however, unknown. We use a forgetting factor approach to model their dynamics, where

the value of the forgetting factor δ controls the dynamics of the coefficients, and the value

of the forgetting factor κ governs the dynamics of the observational variance. If we set

δ = 1, all available historical observations are equally weighted in the updating process,

leading to constant coefficients. If we set δ < 1, older observations are exponentially

down-weighted. The lower we choose the value of δ, the more we down-weight older

observations.

Similarly, κ controls the dynamics of the observational variance. If we set κ = 1, we

obtain a constant variance. Using a conjugate specification with an inverse-gamma prior

for the observational variance and a conditional normal prior for the coefficients, along

with fixed values of the forgetting factors δ and κ, we obtain a t-distributed predictive

density p (yt+1|Dt), which takes the uncertainty about the coefficients and the observa-

36The predictors are the dividend yield, the dividend-payout-ratio, the earnings-to-price ratio, the
sum of squared daily returns on the S&P 500 index as a measure of stock variance, the book-to-market
ratio, the net equity expansion, the treasury bill rate, the long-term government bond yields, the long-
term government bond returns, the default return spread, the default yield spread and inflation (lagged
by one additional month). We use the predictors from 1927:01 to 2020:11. We downloaded the data
from Amit Goyal’s homepage: http://www.hec.unil.ch/agoyal/. See Welch and Goyal (2008) for a
more detailed description of the variables.
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tional variance into account. Our PRs based on Bayesian predictive densities include

the three following setups that differ with respect to the included predictors and the

considered values of the forgetting factors δ and κ:

• LARGE-TVP-SV:

This multivariate setup includes all of the twelve considered predictors from Welch

and Goyal (2008) and uses Bayesian model averaging (BMA) (Raftery et al., 1997)

to attach weights to the predictive densities, which are based on different specifi-

cations of the coefficients’ dynamics. The dynamics are controlled by the value of

the forgetting factor δ. It is chosen from the grid Sδ = {0.96; 0.97; 0.98; 0.99; 1.00},

including constant coefficients as a special case. Hence, the five individual models

Mj, j = 1, . . . , 5, in this setup are defined by different values of δ. As conditional

heteroskedasticity is a well-known stylized fact for asset returns, we set the forget-

ting factor κ = 0.97 for the observational variance, following the choice of Reuters

(1996) for monthly data. A priori, we assign equal weights to the five predictive

densities. After having computed the weights of the predictive densities at each

point in time using Bayes’ rule, asset allocation decisions can be made based upon

the mixture t-distribution using the approximation (16).

• BMA-TVP-CV:

The second setup is based on the setting proposed by Dangl and Halling (2012).

With a set of twelve available predictors, there are 212 different combinations of

predictors that are either included in or excluded from the vector of predictors X.

The value of the forgetting factor δ for controlling the coefficients’ dynamics is again

chosen from the grid Sδ = {0.96; 0.97; 0.98; 0.99; 1.00}. Hence, 5 × 212 = 20, 480

different models Mj, j = 1, . . . , 20, 480, defined by different subsets of included

predictors and values of δ, are at disposal. Dangl and Halling (2012) use a constant

variance (CV). In order to mimic their choice in this aspect, we set κ = 1.00. A
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priori, we assign equal weights to the 20, 480 predictive densities and update their

weights using BMA.37

• UNIV-TVP-SV:

Univariate TVP-SV models are common choices for modeling the dynamics of ag-

gregate stock returns (Johannes et al., 2014; Pettenuzzo and Ravazzolo, 2016).

This setup uses solely univariate (UNIV) predictive regression, including one of the

twelve predictors in each of the regressions, and also considers the grid

Sδ = {0.96; 0.97; 0.98; 0.99; 1.00} for δ, κ is set to 0.97, and all predictive densities

are equally weighted.

The following three PRs rely on a MV framework to form portfolios. The PRs differ

in how they compute the estimated excess return ŷt+1. The weight assigned to the S&P

500 index is computed as:

ωt+1
[0;1.5]

=
1

γ

(
ŷt+1

σ̂2
t+1

)
, (19)

where σ̂2
t+1 denotes the estimate of the variance, calculated over a rolling window of

60 months. The risk aversion γ is set to 3. We consider the following PRs:

• Sum-of the-parts method (SOP):

Imposing economic constraints, Ferreira and Santa-Clara (2011) forecast aggregate

stock returns as the sum of the dividend-price ratio and the long-run historical

average of earnings growth. In contrast to predictive regressions, there are no

parameters to estimate and thus no estimation error.

• Combination of forecasts (CF):

Rapach et al. (2010) propose an equally weighted combination of point forecasts,

37While this setup closely follows Dangl and Halling (2012), there are slight implementation differ-
ences. For example, Dangl and Halling (2012) include the cross-sectional beta premium of Polk et al.
(2006) as a predictor, while we do not include it since the data are available only until 2002.
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where each point forecast is based on univariate predictive regressions with constant

coefficients and one of the predictors proposed in Welch and Goyal (2008). Note

that we use monthly data, whereas Rapach et al. (2010) use quarterly data and

consider 15 instead of 12 predictors.

• Prevailing historical mean (PHM):

This PR uses the prevailing historical mean of the excess returns as a point forecast.

Altogether, our library of PRs contains heterogeneous asset allocation approaches.

The PRs use different information sets and different ways of mapping information into

asset weights. The most striking distinction between them is that some PRs rely on

differently designed Bayesian predictive densities for asset allocation, while others are

based on MV specifications with diverse strategies of producing point forecasts.

4.2.3 Results

Table 3 reports the results. It shows CER values without transaction costs as well as

with proportional transaction costs (CERTC) of 20 bps. We further report the (monthly)

Sharpe ratio without transaction costs (SR) and with proportional transaction costs

(SRTC) of 20 bps. The R2
OOS-statistic (Campbell and Thompson, 2008) compares the

point forecast accuracy of a given approach to the PHM benchmark. It measures the

proportional reduction in the sample mean squared forecast error compared to the pre-

vailing historical mean benchmark. Hence, a positive R2
OOS-statistic indicates that the

mean square forecast error of the given approach is lower than that of the PHM. As a

proxy of predictive skills, we report ρ̂SP (ω∗∗,y), that is, Spearman’s rank correlation co-

efficient between the weights allocated to the risky asset and the realized excess returns.

Let ω∗∗ denote the stacked weights of the risky asset over the evaluation sample, and y

denotes the vector of realized excess returns over the evaluation sample. As a proxy of

risk management skills, we report Spearman’s rank correlation coefficient ρ̂SP (ω∗∗,2,y2).
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We summarize the empirical results as follows. FLEXPOOL generated the highest

CER values and Sharpe ratios among the combined PRs. It exhibited both high predictive

power and strong risk management skills. LARGE-TVP-SV had the strongest predictive

power, while SOP had the best risk management skills. The evolution of combination

weights is depicted in Figure 6. Most of the time, LARGE-TVP-SV got a high (and often

even the entire) weight. SOP, however, with its strong risk management skill, was picked

in three turbulent phases: in September and October 1998, after the strongly negative

returns in August 1998, a time which is associated with the Russian currency crisis and

Long Term Capital Management’s collapse. Further, SOP was picked from 2000:12 to

2003:10, a period associated with the burst of the dotcom bubble. Lastly, SOP was chosen

from 2020:04 to 2020:07 after the large drop due to the COVID-19 pandemic in March

2020. Similar to our first application, the results document FLEXPOOL’s capability of

automatically balancing predictive power and risk management skills of the candidate

PRs when maximizing economic utility.

The value of the forgetting factor α was chosen to be 0.96 according to (8) over the

entire evaluation period. The emphasis on the recent economic utility gains resulted in

more rapid adjustments of the combination weights compared to STATPOOL (see Figure

6). The cumulative utility differences between FLEXPOOL and equally weighted PRs

are depicted in Figure 7. They are statistically significant at the 5% level according to a

one-tailed test of Diebold and Mariano (1995). Similarly, the differences in Sharpe ratios

are statistically significant according to the one-tailed test of Ledoit and Wolf (2008) at

the 10% significance level.

Among the candidate PRs, LARGE-TVP-SV generated by far the highest CER value

and SR despite its low R2
OOS-statistic of −0.1133. This result is reminiscent of the findings

by Cenesizoglu and Timmermann (2012) and Leitch and Tanner (1991) that a model’s

point forecast accuracy and its generated value measured by an economic criterion can
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Table 3: Summary of results.
The table reports our results for the evaluation sample from 1977:01 to 2020:12. It shows monthly CERs
without transaction costs as well as with proportional transaction costs (CERTC) of 20 bps for a power
utility investor with relative risk aversion of γ = 3. We further report the (monthly) Sharpe ratio without
transaction costs (SR) and with proportional transaction costs (SRTC) of 20 bps. As a measure of point
forecast accuracy, we report R2

OOS-statistics. Predictive power and risk management skills are proxied
by Spearman’s rank correlations ρ̂SP (ω∗∗,y) and ρ̂SP (ω∗∗,2,y2), respectively.

Economic Evaluation Criteria Statistical Properties

Candidate PRs CER CERTC SR SRTC R2
OOS ρ̂SP (ω

∗∗,y) ρ̂SP (ω
∗∗,2,y2)

LARGE-TVP-SV 0.0096 0.0090 0.2048 0.1908 −0.1133 0.1139
(0.0088)

−0.0295
(0.4989)

BMA-TVP-CV 0.0067 0.0065 0.1411 0.1363 −0.0388 0.0145
(0.7390)

− 0.0785
(0.0714)

UNIV-TVP-SV 0.0068 0.0065 0.1451 0.1394 −0.0090 0.0176
(0.6870)

− 0.0885
(0.0422)

SOP 0.0071 0.0070 0.1560 0.1522 0.0003 0.0614
(0.1592)

− 0.1213
(0.0053)

CF 0.0069 0.0068 0.1458 0.1433 0.0010 0.0143
(0.7433)

− 0.0115
(0.7928)

PHM 0.0064 0.0064 0.1389 0.1382 0.0000 −0.0256
(0.5578)

− 0.0302
(0.4880)

Combined PRs

FLEXPOOL 0.0096 0.0091 0.2063 0.1965 −0.0502 0.0888
(0.0413)

− 0.0979
(0.0245)

STATPOOL 0.0089 0.0084 0.1929 0.1800 −0.0978 0.0929
(0.0329)

−0.0292
(0.5030)

EQUAL WEIGHTS 0.0078 0.0077 0.1672 0.1631 0.0035 0.0577
(0.1859)

−0.0844
(0.0525)

strongly diverge. Hence, the R2
OOS-statistic can be a poor indicator to guide portfolio

decisions. LARGE-TVP-SV overfits the data because it uses many predictors, time-

varying coefficients and no shrinkage mechanism, resulting in the low R2
OOS-statistic. As

a complex model, LARGE-TVP-SV is strong at capturing the structure of returns with

a high predictive correlation compared to shrunk models, where the signals are partly

muted. However, the high variance of the forecasts based on LARGE-TVP-SV leads to a

low R2
OOS-statistic, which, however, is not detrimental in terms of utility since the weight

restrictions on the risky asset (no short sales, up to 50% leverage) prevent excessive
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portfolio weights.38

Similar to the results in our first application, we find that predictive power and risk

management skills (positive values of ρ̂SP (ω∗∗,y) and negative values of ρ̂SP (ω∗∗,2,y2))

to align well with the (ranking of the) CER values and the SRs. While our approach of

directly optimizing utility at the level of PRs captures the strong economic performance of

LARGE-TVP-SV, combination approaches based on statistical measures such as R2
OOS-

statistics would not be capable of doing so.
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Figure 6: Evolution of combination weights.
The subplots show the evolution of the combination weights. The blue (red) lines indicate the combina-
tion weights in FLEXPOOL (STATPOOL).

38An alternative to imposing weight restrictions is to take advantage of double descent. That is,
in settings where the number of predictors exceeds the number of observations, OOS forecasts tend
to become more accurate as the number of predictors rises. Kelly et al. (2022) exploit this statistical
phenomenon of benign overfitting for optimal market timing. However, this strategy is applicable only in
particular settings. PRs based on double descent could be included as candidate rules in our framework.
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Figure 7: Cumulative utility differences between FLEXPOOL and equally weighted PRs.

BMA-TVP-CV and UNIV-TVP-SV shrink the coefficients towards zero by using sub-

sets of the predictors. As one would expect, point forecast accuracy in terms of R2
OOS-

statistics is higher for these approaches than in case of LARGE-TVP-SV due to their

shrinkage mechanisms. However, the predictive power of BMA-TVP-CV and UNIV-

TVP-SV is substantially lower as measured by the rank correlation ρ̂SP (ω∗∗,y), and so

are their CER values and SRs. Similarly, the equally weighted PRs, SOP and CF achieve

decent point forecast accuracy but are clearly inferior compared to LARGE-TVP-SV in

terms of CER values and SRs. PHM got temporarily high weights in the relatively calm

mid-to-late 1990s. This result aligns with the finding in our first application, where 1/N

got high weights during this period. Hence, it appears that simple PRs tend to be favored

in tranquil periods, while flexible PRs are picked in more turbulent phases.

Figure 8 depicts the CER values as a function of the number of combined PRs.
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The blue diamonds show the generated CER values produced by a particular subset of

combined PRs, and the red squares indicate the average CER values for a given number

of combined PRs. As was the case in our first application, the CER values increase on

average as a function of the number of combined PRs.
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Figure 8: CER values as a function of the number of combined PRs using FLEXPOOL.
The blue diamonds indicate the CER values of all possible combinations for a given number of combined
PRs. The red square represents the average CER values for a given number of combined PRs.

In addition to the results presented so far, we explored three alternative empirical

settings. First, we added the buy-and-hold strategy (without leverage) as a further

candidate PR to the library. It produced a CER value of 0.0073 and a Sharpe ratio of

0.1515. We found our results largely unchanged when adding the buy-and-hold strategy.

The other two alternative settings used data only available over a shorter period.

We explored the utility gains from combining PRs that rely on backward-looking

data and PRs that are based on forward-looking data. As a representative of a PR using

forward-looking data, we chose the strategy of Pyun (2019) that provides OOS forecasts
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of the equity premium based on the variance risk premium. His approach exploits the

relation between the market risk premium and the price of variance risk by the variance

risk exposure. The point forecasts are available from 1990:02 to 2019:12.39 We used a

rolling window of 60 months for computing the variance estimate as an additional input

for the MV specification (19) and imposed the same weight restrictions (no short sales,

up to 50% leverage) as in our previous analysis. We combined this PR with the LARGE-

TVP-SV rule as a representative of a PR that uses backward-looking data and computed

results for the evaluation period from 2000:01 to 2019:12. The PR based on the forward-

looking data produced a CER value of 0.0078 and a SR of 0.2100. LARGE-TVP-SV

generated a CER value of 0.0070 and a SR of 0.1955. Using FLEXPOOL, combination

of both PRs marginally improved the results with a CER value of 0.0079 and a Sharpe

ratio of 0.2146. As a comparison, PHM achieved a CER value of 0.0014 and a Sharpe

ratio of 0.0821 over this shortened evaluation sample.

We further explored whether adding a PR based on the recently proposed approach

by Dong et al. (2022) could achieve incremental value relative to LARGE-TVP-SV. Dong

et al. (2022) propose a novel approach for exploiting a large number of 100 cross-sectional

anomaly portfolio returns as predictors for point forecasts of aggregate excess returns.

These forecasts are available from 1975:01 to 2017:12.40 For this shortened period, we

combined the strategy of Dong et al. (2022) with LARGE-TVP-SV and computed results

for the evaluation sample from 1985:01 to 2017:12. Using the MV specification (19), we

chose their setting where the elastic net is used as a shrinkage technique for comput-

ing expected excess returns and used a rolling window of 60 months for estimating the

variance. We imposed the same weight restrictions (no short sales, up to 50% leverage)

as in our previous analysis. LARGE-TVP-SV achieved a CER value of 0.0082 and the

39We downloaded the data from Sungjune Pyun’s homepage: https://sjpyun.github.io/
research.html.

40We downloaded the forecasts from Dave Rapach’s homepage:
https://sites.google.com/slu.edu/daverapach/publications.

43

https://sjpyun.github.io/research.html
https://sjpyun.github.io/research.html
https://sites.google.com/slu.edu/daverapach/publications


approach of Dong et al. (2022) produced a CER value of 0.0093. The combined PRs

generated a CER value of 0.0098 when using FLEXPOOL.

Overall, the results for this application indicate that flexible PRs exploiting multivari-

ate information can be highly beneficial in terms of economic utility. In contrast, Welch

and Goyal (2008) find no substantial utility gains (relative to the PHM) for any of the

predictors when assessing them individually. Similarly, Goyal et al. (2021) dismiss most

of the predictors advanced after Welch and Goyal (2008) in terms of economic utility

based on individual evaluation. It would be interesting to revisit the economic profitabil-

ity of these predictors using PRs that capture their joint impact on economic utility in

multivariate setups. To this end, multivariate approaches from different domains could

be combined as candidate PRs in our framework; for example, one could explore suitable

machine learning techniques for this type of portfolio choice problem, e.g., the methods

by Kelly et al. (2022) and Nevasalmi and Nyberg (2021), and Bayesian techniques such

as the LARGE-TVP-SV candidate PR.
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5 Concluding Remarks

We have introduced an ensemble framework for combining multiple PRs. Moving for-

ward from existing approaches, the proposed combination strategy enables researchers

to exploit the myriad of existing PRs in a utility maximization framework while diver-

sifying away estimation risk and retaining many appealing properties. Our approach is

capable of merging the virtues of PRs irrespectively of their design and without invoking

distributional assumptions regarding the data generating process of the PRs’ returns.

Two substantive applications documented the expediency of our approach. The com-

bined PRs achieved OOS CER values that were either higher than those of any candidate

PR or roughly as high as those of the ex-post best candidate PR. By taking an ensemble

perspective, the candidate PR with the highest individual utility did not necessarily re-

ceive the highest weight in the combination. Rapidly shifting combination weights played

an important role for enhancing OOS utility by capturing the time-varying performance

of the PRs and the inter-dependencies among their (pseudo) OOS returns. Deeper anal-

yses showed how the flexible combination balanced predictive power of asset returns and

anticipating their variance. Further, the analyses revealed that utility gains on average

rose with the number of candidate PRs—even without using additional regularization on

the combination weights to curb estimation risk.

The overarching contribution of our study is its potential to change the way we ap-

proach portfolio choice problems: instead of striving to find a single best PR, our frame-

work enables an extensive library of candidate PRs to contribute their strengths in an

ensemble, similar to the optimization of a combination of assets. While the search for

new candidate PRs relying on enhanced techniques and novel data sources will go on,

our framework will also provide a tool to assess the incremental empirical merits (or, lack

thereof) of newly proposed PRs.
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